
Pre-Commit
Security activities before code
is checked in to version control

Threat Modeling/Attack Mapping:
 Attacker personas
 Evil user stories
 Raindance
 Mozilla Rapid Risk Assessment
 OWASP ThreatDragon

Security and Privacy Stories:
 OWASP ASVS
 SAFECode Security Stories

IDE Security Plugins:
 DevSkim
 FindSecurityBugs
 Puma Scan
 SonarLint

Pre-Commit Security Hooks:
 git-hound
 git-secrets
 Repo-supervisor
 ThoughtWorks Talisman

Secure Coding Standards:
 CERT Secure Coding Standards
 OWASP Proactive Controls

Manual and Peer Reviews:
 Gerrit
 GitHub pull request
 GitLab merge request
 Review Board

Operations
Continuous security monitoring, testing, audit, and
compliance checks

Fault Injection:
 Chaos Kong
 Chaos Monkey

Cyber Simulations:
 Game day exercises
 Tabletop scenarios

Penetration Testing:
 Attack-driven defense
 Bug Bounties
 Red team exercises

Threat Intelligence:
 Diamond Model
 Kill Chain
 STIX
 TAXII

Continuous Scanning:
 OpenSCAP
 OpenVAS
 Prowler
 Scout2
 vuls

Blameless Postmortems:
 Etsy Morgue

Continuous Monitoring:
 grafana
 graphite
 statsd
 seyren
 sof-elk
 ElastAlert
 411

Cloud Monitoring:
 CloudWatch
 CloudTrail
 Reddalert

Cloud Compliance:
 Cloud Custodian
 Compliance Monkey
 Forseti Security

Commit (Continuous Integration)
Fast, automated security checks during the build and
Continuous Integration steps

Static Code Analysis
(SCA):

 FindSecurityBugs
 Brakeman
 ESLint
 Phan

Security Unit Tests:
 JUnit
 Mocha
 xUnit

Infrastructure as Code
Analysis:

 ansible-lint
 Foodcritic
 puppet-lint
 cfn_nag

Dependency
Management:

 OWASP Dependency Check
 Bundler-Audit
 Gemnasium
 PHP Security Checker
 Retire.JS
 Node Security Platform

Container Security:
 Actuary
 Anchore
 Clair
 Dagda
 Docker Bench
 Falco

Container Hardening:
 Bane
 CIS Benchmarks
 grsecurity

Acceptance (Continuous Delivery)
Automated security acceptance, functional testing, and
deep out-of-band scanning during Continuous Delivery

Infrastructure as Code:
 Ansible
 Chef
 Puppet
 SaltStack
 Terraform
 Vagrant

Immutable Infrastructure:
 Docker
 rkt

Security Scanning:
 Arachni
 nmap
 sqlmap
 sslyze
 ZAP
 ssh_scan

Cloud Configuration
Management:

 AWS CloudFormation
 Azure Resource Manager
 Google Cloud Deployment Manager

Security Acceptance Testing:
 BDD-Security
 Gauntlt
 Mittn

Infrastructure Tests:
 Serverspec
 Test Kitchen

Infrastructure Compliance
Checks:

 HubbleStack
 InSpec

Production (Continuous Deployment)
Security checks before, during, and after code is
deployed to production

Security Smoke Tests:
 ZAP Baseline Scan
 nmap
 ssllabs-scan

Configuration Safety Checks:
 AWS Config
 AWS Trusted Advisor
 Microsoft Azure Advisor
 Security Monkey
 OSQuery

Secrets Management:
 Ansible Vault
 Blackbox
 Chef Vault
 Docker Secrets
 Hashicorp Vault
 Pinterest Knox

Cloud Secrets Management:
 AWS KMS
 Azure Key Vault
 Google Cloud KMS

Cloud Security Testing:
 CloudSploit
 Nimbostratus

Server Hardening:
 dev-sec.io
 SIMP

Host Intrusion Detection
System (HIDS):

 fail2ban
 OSSEC
 Samhain

First Steps in Automation
 Build a security smoke test (e.g., ZAP Baseline Scan)

 Conduct negative unit testing to get off of the happy path

 Attack your system before somebody else does (e.g., Gauntlt)

 Add hardening steps into configuration recipes (e.g., dev-sec.io)

 Harden and test your CI/CD pipelines and do not rely on
developer-friendly defaults

S A N S A P P S E C C U R R I C U L U M
P L A T F O R M S E C U R I T Y

DEV541
Secure Coding in Java/JEE

GSSP-JAVA

DEV544
Secure Coding in .NET

GSSP-NET

DEV531
Defending Mobile Applications

Security Essentials

S P E C I A L I Z A T I O N

SEC642
Advanced Web App
Penetration Testing,
Ethical Hacking, and

Exploitation Techniques

SEC542
Web App Penetration Testing

and Ethical Hacking
GWAPT

A S S E S S M E N T

AppSec CyberTalent
Assessment

sans.org/appsec-assessment

C O R E

STH.DEVELOPER
Application Security
Awareness Modules

DEV534
Secure DevOps:

A Practical Introduction

DEV540
Secure DevOps and Cloud

Application Security

DEV522
Defending Web Applications

Security Essentials
GWEB

Start Your DevOps Metrics Program
 Number of high-severity vulnerabilities and how long they are open

 Build and deployment cycle time

 Automated test frequency and coverage

 Scanning frequency and coverage

 Number of attacks (and attackers) hitting your application

Building a DevSecOps Program (CALMS)
Culture
Break down barriers between Development, Security, and
Operations through education and outreach

Automation
Embed self-service automated security scanning and testing in
continuous delivery

Lean
Value stream analysis on security and compliance processes to
optimize flow

Measurement
Use metrics to shape design and drive decisions

Sharing
Share threats, risks, and vulnerabilities by adding them to
engineering backlogs

Poster contributors:
 Ben Allen
 Jim Bird
 David Deatherage
 Mark Geeslin
 Eric Johnson
 Frank Kim
 Jason Lam
 Gregory Leonard
 Dr. Johannes Ullrich

Learn to build, deliver, and
deploy modern applications

using secure DevOps and cloud
principles, practices, and tools.

DEV540: Secure DevOps and
Cloud Application Security

www.sans.org/DEV540

Secure
DevOps

Toolchain

Poster4_AppSec_2018.indd 2 12/19/17 2:31 PM

https://www.sans.org/course/secure-devops-cloud-application-security
https://www.sans.org/course/secure-devops-cloud-application-security
https://www.sans.org/course/defending-mobile-applications-security-essentials
https://www.sans.org/course/secure-coding-java-jee-developing-defensible-applications
https://www.sans.org/course/secure-coding-net-developing-defensible-applications
https://securingthehuman.sans.org/security-awareness-training/developer
https://www.sans.org/course/defending-web-applications-security-essentials
https://www.sans.org/course/secure-dev-ops-a-practical-introduction
https://www.sans.org/course/web-app-penetration-testing-ethical-hacking
https://www.sans.org/course/advanced-web-app-penetration-testing-ethical-hacking
https://www.sans.org/cybertalent/assessment-detail?utm_medium=Print&utm_source=SANS+Brochure&utm_content=SCT+Assessments+AppSec+Brochure&utm_campaign=SCT+Assessments#appsec

Security Roadmap
P O S T E R

Securing Web Application
Technologies (SWAT)

C H E C K L I S T
Version 1.5

Secure DevOps
Toolchain

Ingraining security into the mind of every developer.

The SWAT Checklist provides an easy-to-reference set of best practices that raise
awareness and help development teams create more secure applications. It’s a
first step toward building a base of security knowledge around web application
security. Use this checklist to identify the minimum standard that is required to
neutralize vulnerabilities in your critical applications.

A U T H E N T I C A T I O N
BEST PRACTICE

Never allow credentials to be stored directly within the application code.
While it can be convenient to test application code with hardcoded
credentials during development, this significantly increases risk and should be avoided.

CWE-798Don’t hardcode
credentials

EXAMPLE: Hard-coded passwords in networking devices
https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf

DESCRIPT ION C W E I D

Password reset systems are often the weakest link in an application.
These systems are often based on users answering personal questions to
establish their identity and in turn reset the password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not
an account is valid, preventing username harvesting.

CWE-640Develop a strong
password reset

system

EXAMPLE: Sara Palin password hack http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

Account lockout needs to be implemented to prevent brute-force
attacks against both the authentication and password reset functionality.
After several tries on a specific user account, the account should be locked
for a period of time or until it is manually unlocked. Additionally, it is best to
continue the same failure message indicating that the credentials are incorrect
or the account is locked to prevent an attacker from harvesting usernames.

CWE-307Implement
account

lockout against
brute-force

attacks

Messages for authentication errors must be clear and, at the same
time, be written so that sensitive information about the system is not
disclosed. For example, error messages that reveal that the user id is
valid but that the corresponsing password is incorrect confirm to an
attacker that the account does exist on the system.

Don’t disclose too
much information
in error messages

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks provide a
centralized secure location for storing credentials to the backend database.
These encrypted stores should be leveraged when possible.

CWE-257Store database
credentials

securely

If an application becomes compromised it is important that the
application itself and any middleware services be configured to run with
minimal privileges. For instance, while the application layer or business layer
need the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

CWE-250Applications and
middleware

should run with
minimal privileges

A password policy should be created and implemented so that passwords
meet specific strength criteria.

CWE-521Implement a
strong

password policy EXAMPLE:
https://pages.nist.gov/800-63-3/sp800-63-3.html

A N D

AppSec CyberTalent
Assessment
sans.org/appsec-assessment

E R R O R H A N D L I N G A N D L O G G I N G
DESCRIPT IONBEST PRACTICE C W E I D

Given the languages and frameworks in use for web application
development, never allow an unhandled exception to occur. Error
handlers should be configured to handle unexpected errors and
gracefully return controlled output to the user.

No unhandled
exceptions

CWE-391

Your development framework or platform may generate default error
messages. These should be suppressed or replaced with customized
error messages, as framework-generated messages may reveal
sensitive information to the user.

Suppress
framework-
generated

errors

Log any authentication and session management activities along
with all input validation failures. Any security-related events should
be logged. These may be used to detect past or in-progress attacks.

Log all
authentication and
validation activities

CWE-778

Any activities or occasions where the user’s privilege level changes
should be logged.

Log all privilege
changes

CWE-778

Any administrative activities on the application or any of its
components should be logged.

Log administrative
activities

CWE-778

Any access to sensitive data should be logged. This is particularly
important for corporations that have to meet regulatory
requirements like HIPAA, PCI, or SOX.

Log access to
sensitive data

CWE-778

While logging errors and auditing access are important, sensitive
data should never be logged in an unencrypted form. For example,
under HIPAA and PCI, it would be a violation to log sensitive data into
the log itself unless the log is encrypted on the disk. Additionally, it
can create a serious exposure point should the web application itself
become compromised.

Do not log
inappropriate

data

CWE-532

Logs should be stored and maintained appropriately to avoid
information loss or tampering by intruders. Log retention should
also follow the retention policy set forth by the organization to meet
regulatory requirements and provide enough information for forensic
and incident response activities.

Store logs
securely

CWE-533

Error messages should not reveal details about the internal state of
the application. For example, file system path and stack information
should not be exposed to the user through error messages.

CWE-209Display generic
error messages

CWE-209

A C C E S S C O N T R O L

Use a Mandatory Access Control system. All access decisions
will be based on the principle of least privilege. If not explicitly
allowed then access should be denied. Additionally, after an
account is created, rights must be specifically added to that
account to grant access to resources.

Apply the
principle

of least privilege

CWE-272
CWE-250

Do not allow direct references to files or parameters that can be
manipulated to grant excessive access. Access control decisions
must be based on the authenticated user identity and trusted
server-side information.

Don’t use direct
object references
for access control

checks

CWE-284

An unvalidated forward can allow an attacker to access private
content without authentication. Unvalidated redirects allow an
attacker to lure victims into visiting malicious sites. Prevent this
from occurring by conducting the appropriate access control
checks before sending the user to the given location.

Don’t use
unvalidated
forwards or

redirects

CWE-601

DESCRIPT IONBEST PRACTICE C W E I D

Always apply the principle of complete mediation, forcing all requests
through a common security “gate keeper.” This ensures that access
control checks are triggered whether or not the user is authenticated.

CWE-284Apply access
control checks

consistently

S E S S I O N M A N A G E M E N T
BEST PRACTICE

Session tokens must be generated by secure random functions and must
be of sufficient length to withstand analysis and prediction.

CWE-6Ensure that
session identifiers

are sufficiently
random

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

CWE-384Regenerate
session tokens

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to
the application, effectively resetting the timeout counter automatically.

CWE-613Implement an idle
session timeout

Users should be logged out after an extensive amount of time
(e.g., 4-8 hours) has passed since they logged in. This helps
mitigate the risk of an attacker using a hijacked session.

CWE-613Implement an
absolute session

timeout

Unless the application requires multiple simultaneous sessions for a
single user, implement features to detect session cloning attempts.
Should any sign of session cloning be detected, the session should be
destroyed, forcing the real user to reauthenticate.

Destroy sessions
at any sign of

tampering

The session cookie should be set with both the HttpOnly and the
Secure flags. This ensures that the session id will not be accessible to
client-side scripts and will only be transmitted over HTTPS.

CWE-79
CWE-614

Use secure cookie
attributes

(i.e., HttpOnly and
Secure flags)

When the user logs out of the application, the session and
corresponding data on the server must be destroyed. This ensures that
the session cannot be accidentially revived.

CWE-613Invalidate the
session after

logout

The cookie domain and path scope should be set to the most restrictive
settings for your application. Any wildcard domain scoped cookie must
have a good justification for its existence.

Set the cookie
domain and path

correctly

The logout button or logout link should be easily accessible to users on
every page after they have authenticated.

Place a logout
button on every

page

The session cookie should have a reasonable expiration time.
Non-expiring session cookies should be avoided.

Set the cookie
expiration time

DESCRIPT ION C W E I D

software-security.sans.org

Twitter
@sansappsec
Latest news, promos, and other information

AppSec_Poster_v1.5_1-18

THE MOST TRUSTED SOURCE FOR INFORMATION SECURITY TRAINING, CERTIFICATION, AND RESEARCH

Securing Web Application Technologies (SWAT) C H E C K L I S T I N P U T A N D O U T P U T H A N D L I N G
DESCRIPT IONBEST PRACTICE C W E I D

For each user input field, there should be validation on the input
content. Whitelisting input is the preferred approach. Only accept
data that meet a certain criteria. For input that needs more
flexibility, blacklisting can also be applied where known bad input
patterns or characters are blocked.

Prefer whitelists
over blacklists

CWE-159
CWE-144

In order to prevent Cross-Site Request Forgery attacks, you must
embed a random value that is not known to third parties into the
HTML form. This CSRF protection token must be unique to each
request. This prevents a forged CSRF request from being submitted
because the attacker does not know the value of the token.

Use tokens to
prevent forged

requests

CWE-352For every page in your application, set the encoding using HTTP
headers or meta tags within HTML. This ensures that the encoding
of the page is always defined and that the browser will not have to determine
the encoding on its own. Setting a consistent encoding like UTF-8 for your
application reduces the overall risk of issues like Cross-Site Scripting.

Set the encoding
for your

application

CWE-172

When hosting user uploaded content that can be viewed by other
users, use the X-Content-Type-Options: nosniff header so that
browsers do not try to guess the data type. Sometimes the browser can be
tricked into displaying the data type incorrectly (e.g., showing a GIF file as
HTML). Always let the server or application determine the data type.

Use the nosniff
header for

uploaded content

CWE-430

When accepting file uploads from the user make sure to validate the
size of the file, the file type, and the file contents, and ensure that it
is not possible to override the destination path for the file.

Validate uploaded
files

CWE-434
CWE-616
CWE-22

SQL queries should be crafted with user content passed into a bind
variable. Queries written this way are safe against SQL injection
attacks. SQL queries should not be created dynamically using string
concatenation. Similarly, the SQL query string used in a bound or
parameterized query should never be dynamically built from user input.

Use
parameterized

SQL queries

CWE-89
CWE-564

EXAMPLE: Sony SQL injection hack http://www.infosecurity-magazine.com/view/27930/
lulzsec-sony-pictures-hackers-were-school-chums

Use the X-Frame-Options header or Content-Security-Policy (CSP)
header frame-ancestors directive to prevent content from being
loaded by a foreign site in a frame. This mitigates Clickjacking
attacks. For older browsers that do not support this header add
framebusting Javascript code to mitigate Clickjacking (although this
method is not foolproof and can be circumvented).

X-Frame-Options
or CSP headers

CAPEC-103
CWE-693

All output functions must contextually encode data before sending
the data to the user. Depending on where the output will end up in
the HTML page, the output must be encoded differently. For example,
data placed in the URL context must be encoded differently than data
placed in a JavaScript context within the HTML page.

Conduct
contextual output

encoding

CWE-79

EXAMPLE: Resource:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

The source of the input must be validated. For example, if input is
expected from a POST request, do not accept the input variable from
a GET request.

CWE-20
CWE-346

Validate the
source of input

When including a link to a page on a different site that opens in a
new tab (such as by using target=”_blank”), include rel=”noopener
noreferrer” to prevent the linked page from changing the opener’s
tab (such as to a look-a-like phishing site).

Prevent
tabnabbing

The Content Security Policy (CSP), X-XSS-Protection, and Public-Key-
Pins headers help defend against Cross-Site Scripting (XSS) and
Man-in-the-Middle (MITM) attacks.

Use secure HTTP
response headers

CWE-79
CWE-692

EXAMPLE: OWASP Secure Headers Project
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

Website
software-security.sans.org
Free resources, white papers, webcasts, and more

Blog
software-security.sans.org/blogsoftware-security.sans.org/blog

C O N F I G U R A T I O N A N D O P E R A T I O N S

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.
EXAMPLE: DevOps Audit Defense Toolkit
https://itrevolution.com/devops-audit-defense-toolkit

CWE-439Establish a
rigorous change

management
process

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes
are made in a consistent, repeatable manner in all environments.

Automate
application
deployment

Integrating security into the design phase saves money and time.
Conduct a risk review with security professionals and threat model the
application to identify key risks. This helps you integrate appropriate
countermeasures into the design and architecture of the application.

CWE-701
CWE-656

Conduct a
design review

Security-focused code reviews can be one of the most effective ways to
find security bugs. Regularly review your code looking for common issues
like SQL Injection and Cross-Site Scripting. Leverage automated tools to
maximize breadth of coverage and consistency.

CWE-702Perform code
reviews

An incident handling plan should be drafted and tested on a regular
basis. The contact list of people to involve in a security incident related to
the application should be well defined and kept up to date.

Define an incident
handling plan

All components of infrastructure that support the application should be
configured according to security best practices and hardening guidelines.
In a typical web application this can include routers, firewalls, network
switches, operating systems, web servers, application servers, databases,
and application frameworks.

CWE-15
CWE-656

Harden the
infrastructure

Training helps define a common language that the team can use to
improve the security of the application. Education should not be confined
solely to software developers, testers, and architects. Anyone associated
with the development process, such as business analysts and project
managers, should all have periodic software security awareness training.

Educate the team
on security

DESCRIPT IONBEST PRACTICE

Engage the business owner to define security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. Defining
these requirements up front ensures that security is baked into the system.

Define security
requirements

Conduct security testing both during and after development to ensure the
application meets security standards. Testing should also be conducted after major
releases to ensure vulnerabilities did not get introduced during the update process.
Leverage automation by including security tests into the CI/CD pipeline.

Perform security
testing

C W E I D

S A N S A P P S E C C U R R I C U L U M
P L A T F O R M S E C U R I T Y

DEV541
Secure Coding in Java/JEE

GSSP-JAVA

DEV544
Secure Coding in .NET

GSSP-NET

DEV531
Defending Mobile Applications

Security Essentials

S P E C I A L I Z A T I O N

SEC642
Advanced Web App
Penetration Testing,
Ethical Hacking, and

Exploitation Techniques

SEC542
Web App Penetration Testing

and Ethical Hacking
GWAPT

A S S E S S M E N T

AppSec CyberTalent
Assessment

sans.org/appsec-assessment

C O R E

STH.DEVELOPER
Application Security
Awareness Modules

DEV534
Secure DevOps:

A Practical Introduction

DEV540
Secure DevOps and Cloud

Application Security

DEV522
Defending Web Applications

Security Essentials
GWEB

C W E I D

D A T A P R O T E C T I O N
DESCRIPT IONBEST PRACTICE

For all pages requiring protection by HTTPS, the same URL should not be
accessible via the insecure HTTP channel.

CWE-319Disable HTTP
access for

all protected
resources

The Strict-Transport-Security header ensures that the browser does not
talk to the server over HTTP. This helps reduce the risk of HTTP downgrade
attacks as implemented by the sslsniff tool.

Use the Strict-
Transport-

Security header

Conduct an evaluation to ensure that sensitive data elements are
not being unnecessarily transported or stored. Where possible, use
tokenization to reduce data exposure risks.

Limit the use
and storage of
sensitive data

Encrypt sensitive or critical data before storage. CWE-311
CWE-312

Encrypt sensitive
data at rest

Browser data caching should be disabled using the cache control HTTP
headers or meta tags within the HTML page. Additionally, sensitive input
fields, such as the login form, should have the autocomplete attribute
set to off in the HTML form to instruct the browser not to cache the
credentials.

CWE-524Disable data
caching using
cache control
headers and

autocomplete

Ideally, HTTPS should be used for your entire application. If you have to
limit where it’s used, then HTTPS must be applied to any authentication
pages as well as to all pages after the user is authenticated. If sensitive
information (e.g., personal information) can be submitted before
authentication, those features must also be sent over HTTPS. Always link
to the HTTPS version of URL if available. Relying on redirection from HTTP
to HTTPS increases the opportunity for an attacker to insert a man-in-
the-middle attack without raising the user’s suspicion.
EXAMPLE: sslstrip

CWE-311
CWE-319
CWE-523

Use HTTPS
everywhere

User passwords must be stored using secure hashing techniques with
strong algorithms like PBKDF2, bcrypt, or SHA-512. Simply hashing the
password a single time does not sufficiently protect the password. Use
adaptive hashing (a work factor), combined with a randomly generated
salt for each user to make the hash strong.
EXAMPLE: LinkedIn password leak

CWE-257Store user
passwords using

a strong, iterative,
salted hash

When keys are stored in your system they must be properly secured and
only accessible to the appropriate staff on a need-to-know basis.
EXAMPLE: AWS Key Management Service (KMS), Azure Key Vault, AWS CloudHSM

CWE-320Set up secure key
management

processes

HTTPS certificates should be signed by a reputable certificate authority.
The name on the certificate should match the FQDN of the website. The
certificate itself should be valid and not expired.
EXAMPLE: Let’s Encrypt https://letsencrypt.org

Use valid HTTPS
certificates from

a reputable
certificate authority

Use strong TLS
configurations

Weak ciphers must be disabled on all servers. For example, SSL v2, SSL v3, and
TLS protocols prior to 1.2 have known weaknesses and are not considered secure.
Additionally, disable the NULL, RC4, DES, and MD5 cipher suites. Ensure all key
lengths are greater than 128 bits, use secure renegotiation, and disable compression.
EXAMPLE: Qualys SSL Labs

C W E I D

If encryption keys are exchanged or pre-set in your application, then any key
establishment or exchange must be performed over a secure channel.

Securely exchange
encryption keys

credentials during development, this significantly increases risk and should be avoided.

Don’t hardcode
credentials

EXAMPLE: Hard-coded passwords in networking devices
https://www.us-cert.gov/control_systems/pdf/ICSA-12-243-01.pdf

Password reset systems are often the weakest link in an application.
These systems are often based on users answering personal questions to
establish their identity and in turn reset the password. The system needs
to be based on questions that are both hard to guess and brute force.
Additionally, any password reset option must not reveal whether or not
an account is valid, preventing username harvesting.

Develop a strong
password reset

Sara Palin password hack http://en.wikipedia.org/wiki/Sarah_Palin_email_hack

Account lockout needs to be implemented to prevent brute-force
attacks against both the authentication and password reset functionality.
After several tries on a specific user account, the account should be locked
for a period of time or until it is manually unlocked. Additionally, it is best to
continue the same failure message indicating that the credentials are incorrect
or the account is locked to prevent an attacker from harvesting usernames.

Messages for authentication errors must be clear and, at the same
time, be written so that sensitive information about the system is not
disclosed. For example, error messages that reveal that the user id is
valid but that the corresponsing password is incorrect confirm to an
attacker that the account does exist on the system.

Modern web applications usually consist of multiple layers. The business
logic tier (processing of information) often connects to the data tier
(database). Connecting to the database, of course, requires authentication.
The authentication credentials in the business logic tier must be stored in a
centralized location that is locked down. Scattering credentials throughout
the source code is not acceptable. Some development frameworks provide a
centralized secure location for storing credentials to the backend database.
These encrypted stores should be leveraged when possible.

If an application becomes compromised it is important that the
application itself and any middleware services be configured to run with
minimal privileges. For instance, while the application layer or business layer
need the ability to read and write data to the underlying database, administrative
credentials that grant access to other databases or tables should not be provided.

A password policy should be created and implemented so that passwords
meet specific strength criteria.

https://pages.nist.gov/800-63-3/sp800-63-3.html

S E S S I O N M A N A G E M E N T

Session tokens must be generated by secure random functions and must
be of sufficient length to withstand analysis and prediction.

Session tokens should be regenerated when the user authenticates to
the application and when the user privilege level changes. Additionally, should
the encryption status change, the session token should always be regenerated.

When a user is not active, the application should automatically log the
user out. Be aware that Ajax applications may make recurring calls to
the application, effectively resetting the timeout counter automatically.

Users should be logged out after an extensive amount of time
(e.g., 4-8 hours) has passed since they logged in. This helps
mitigate the risk of an attacker using a hijacked session.

Unless the application requires multiple simultaneous sessions for a
single user, implement features to detect session cloning attempts.
Should any sign of session cloning be detected, the session should be
destroyed, forcing the real user to reauthenticate.

Use secure cookie
attributes

(i.e., HttpOnly and
Secure flags)

When the user logs out of the application, the session and
corresponding data on the server must be destroyed. This ensures that
the session cannot be accidentially revived.

Set the cookie
domain and path

correctly

The logout button or logout link should be easily accessible to users on
every page after they have authenticated.button on every

Set the cookie
expiration time

For all pages requiring protection by HTTPS, the same URL should not be
accessible via the insecure HTTP channel.

The Strict-Transport-Security header ensures that the browser does not
talk to the server over HTTP. This helps reduce the risk of HTTP downgrade
attacks as implemented by the sslsniff tool.Security header

Ideally, HTTPS should be used for your entire application. If you have to
limit where it’s used, then HTTPS must be applied to any authentication
pages as well as to all pages after the user is authenticated. If sensitive
information (e.g., personal information) can be submitted before
authentication, those features must also be sent over HTTPS. Always link
to the HTTPS version of URL if available. Relying on redirection from HTTP
to HTTPS increases the opportunity for an attacker to insert a man-in-
the-middle attack without raising the user’s suspicion.

CWE-311
CWE-319
CWE-523

User passwords must be stored using secure hashing techniques with
strong algorithms like PBKDF2, bcrypt, or SHA-512. Simply hashing the
password a single time does not sufficiently protect the password. Use
adaptive hashing (a work factor), combined with a randomly generated

Store user
passwords using

a strong, iterative,
salted hash

Set up secure key
management

processes

C O N F I G U R A T I O N A N D O P E R A T I O N S

A rigorous change management process must be maintained during
operations. For example, new releases should only be deployed after
proper testing and associated documentation has been completed.

DevOps Audit Defense Toolkit
https://itrevolution.com/devops-audit-defense-toolkit

Automating the deployment of your application, using Continuous
Integration and Continuous Deployment, helps to ensure that changes
are made in a consistent, repeatable manner in all environments.

Integrating security into the design phase saves money and time.
Conduct a risk review with security professionals and threat model the
application to identify key risks. This helps you integrate appropriate

Engage the business owner to define security requirements for the application.
This includes items that range from the whitelist validation rules all the way to
nonfunctional requirements like the performance of the login function. Defining
these requirements up front ensures that security is baked into the system.

Conduct an evaluation to ensure that sensitive data elements are
not being unnecessarily transported or stored. Where possible, use
tokenization to reduce data exposure risks.

Encrypt sensitive or critical data before storage.Encrypt sensitive
data at rest

Disable data
caching using
cache control
headers and

autocomplete

Use valid HTTPS
certificates from

a reputable
certificate authority

Use strong TLS
configurations

Securely exchange
encryption keys

Poster4_AppSec_2018.indd 1 12/19/17 2:31 PM

https://software-security.sans.org
https://software-security.sans.org
https://software-security.sans.org/blog
https://www.sans.org/course/defending-mobile-applications-security-essentials
https://www.sans.org/cybertalent/assessment-detail?utm_medium=Print&utm_source=SANS+Brochure&utm_content=SCT+Assessments+AppSec+Brochure&utm_campaign=SCT+Assessments#appsec
https://www.sans.org/course/secure-devops-cloud-application-security
https://www.sans.org/course/secure-coding-java-jee-developing-defensible-applications
https://www.sans.org/course/secure-coding-net-developing-defensible-applications
https://securingthehuman.sans.org/security-awareness-training/developer
https://www.sans.org/course/defending-web-applications-security-essentials
https://www.sans.org/course/secure-dev-ops-a-practical-introduction
https://www.sans.org/course/web-app-penetration-testing-ethical-hacking
https://www.sans.org/course/advanced-web-app-penetration-testing-ethical-hacking
https://www.sans.org/cybertalent/assessment-detail?utm_medium=Print&utm_source=SANS+Brochure&utm_content=SCT+Assessments+AppSec+Brochure&utm_campaign=SCT+Assessments#appsec

